Feature¶
Features in Abaqus/CAE include Parts, Datums, Partitions, and Assembly operations. The commands that create Feature objects on only the Part object are described in Part commands. The commands that create Feature objects in only the rootAssembly object are described in Assembly commands. The commands that create Feature objects on both the Part and the rootAssembly objects are described here.
Other Classes¶
- class Feature[source]¶
Bases:
object
Abaqus/CAE is a feature-based modeling system, and features are stored in the Feature object. The user defines the parameters of the feature, and Abaqus/CAE modifies the model based on the value of the parameters. This evaluation of the parameters is called regeneration of the feature. Feature objects contain both the parameters and the resulting model modification.
Note
This object can be accessed by:
import part mdb.models[name].parts[name].features[name] mdb.models[name].parts[name].featuresById[i] import assembly mdb.models[name].rootAssembly.features[name] mdb.models[name].rootAssembly.featuresById[i]
Note
Check Feature on help.3ds.com/2025.
Member Details:
- AttachmentPoints(
- name,
- points,
- projectionMethod=
PROJECT_BY_PROXIMITY
, - projectOnFaces=
()
, - projectOnElementFaces=
()
, - projectionDirStartPt=
None
, - projectionDirEndPt=
None
, - setName=
''
, This method creates an attachment points Feature. Attachment points may be created using datum points, vertices, reference points, attachment points, interesting points, orphan mesh nodes or coordinates. Optionally, the attachment points can be projected on geometric faces or element faces.
Note
This function can be accessed by:
mdb.models[name].parts[name].AttachmentPoints mdb.models[name].rootAssembly.AttachmentPoints
Note
- Parameters:¶
- name¶
A String specifying a unique Feature name.
- points¶
A tuple of points. Each point can be a ConstrainedSketchVertex, Datum point, Reference point, Attachment point, orphan mesh Node, Interesting point object, or a tuple of Floats representing the coordinates of a point.
- projectionMethod=
PROJECT_BY_PROXIMITY
¶ A SymbolicConstant specifying the projection method. Possible values are PROJECT_BY_PROXIMITY and PROJECT_BY_DIRECTION. The default value is PROJECT_BY_PROXIMITY.
- projectOnFaces=
()
¶ A sequence of Face objects specifying the geometry faces onto which the points are to be projected.
- projectOnElementFaces=
()
¶ A sequence of MeshFace objects specifying the orphan mesh element faces onto which the points are to be projected.
- projectionDirStartPt=
None
¶ A point specifying the start point of the projection direction. The point can be a ConstrainedSketchVertex, Datum point, Reference point, Attachment point, orphan mesh Node, Interesting point object, or a tuple of Floats representing the coordinates of a point.
- projectionDirEndPt=
None
¶ A point specifying the end point of the projection direction. The point can be a ConstrainedSketchVertex, Datum point, Reference point, Attachment point, orphan mesh Node, Interesting point object, or a tuple of Floats representing the coordinates of a point.
- setName=
''
¶ A String specifying a unique set name.
- Returns:¶
feature – A Feature object
- Return type:¶
- AttachmentPointsAlongDirection(
- name,
- startPoint,
- pointCreationMethod,
- endPoint=
None
, - direction=
''
, - spacing=
''
, - numPtsAlongDir=
''
, - numPtsBetweenPts=
''
, - createPtAtStartPt=
True
, - createPtAtEndPt=
True
, - projectionMethod=
PROJECT_BY_PROXIMITY
, - projectOnFaces=
()
, - projectOnElementFaces=
()
, - projectionDirStartPt=
None
, - projectionDirEndPt=
None
, - flipDirection=
0
, - setName=
''
, This method creates a Feature object by creating attachment points along a direction or between two points. A Datum point, a ConstrainedSketchVertex, a Reference point, an Attachment point, an Interesting point, or an orphan mesh Node can be specified as the start or end point. The direction can be specified using a straight edge or a datum axis.
Note
This function can be accessed by:
mdb.models[name].parts[name].AttachmentPoints mdb.models[name].rootAssembly.AttachmentPoints
- Parameters:¶
- name¶
A String specifying a unique Feature name.
- startPoint¶
A point specifying the start point of the direction along which to create points. The point can be a ConstrainedSketchVertex, Datum point, Reference point, Attachment point, orphan mesh Node, Interesting point object, or a tuple of Floats representing the coordinates of a point.
- pointCreationMethod¶
A SymbolicConstant specifying the point creation method. Possible values are AUTO_FIT, NUM_PTS_ALONG_DIR, and NUM_PTS_BETWEEN_PTS.
- endPoint=
None
¶ A point specifying the end point if creating points between two points. The point can be a ConstrainedSketchVertex, Datum point, Reference point, Attachment point, orphan mesh Node, Interesting point object, or a tuple of Floats representing the coordinates of a point.
- direction=
''
¶ The direction can be specified by a straight edge or a datum axis.
- spacing=
''
¶ A float specifying the spacing to be used between two points.
- numPtsAlongDir=
''
¶ An integer specifying the number of points to be created along the specified direction.
- numPtsBetweenPts=
''
¶ An integer specifying the number of points to be created between the start and end points.
- createPtAtStartPt=
True
¶ A Boolean specifying whether to create an attachment point at the start point. The default value is True.
- createPtAtEndPt=
True
¶ A Boolean specifying whether to create an attachment point at the end point. The default value is True.
- projectionMethod=
PROJECT_BY_PROXIMITY
¶ A SymbolicConstant specifying the projection method. Possible values are PROJECT_BY_PROXIMITY and PROJECT_BY_DIRECTION. The default value is PROJECT_BY_PROXIMITY.
- projectOnFaces=
()
¶ A sequence of Face objects specifying the geometry faces onto which the points are to be projected.
- projectOnElementFaces=
()
¶ A sequence of MeshFace objects specifying the orphan mesh element faces onto which the points are to be projected.
- projectionDirStartPt=
None
¶ A point specifying the start point of the projection direction. The point can be a ConstrainedSketchVertex, Datum point, Reference point, Attachment point, orphan mesh Node, Interesting point object, or a tuple of Floats representing the coordinates of a point.
- projectionDirEndPt=
None
¶ A point specifying the end point of the projection direction. The point can be a ConstrainedSketchVertex, Datum point, Reference point, Attachment point, orphan mesh Node, Interesting point object, or a tuple of Floats representing the coordinates of a point.
- flipDirection=
0
¶ A Boolean specifying if the direction along which the attachment points are created should be reversed. This argument is valid only when pointCreationMethod = NUM_PTS_ALONG_DIR.
- setName=
''
¶ A String specifying a unique set name.
- Returns:¶
feature – A Feature object
- Return type:¶
- AttachmentPointsOffsetFromEdges(
- name,
- edges,
- startPoint=
''
, - flipDirection=
''
, - pointCreationMethod=
BY_NUMBER
, - numberOfPoints=
''
, - spacingBetweenPoints=
''
, - offsetFromStartPoint=
0
, - offsetFromEndPoint=
0
, - spacingMethod=
AUTO_FIT_PTS
, - patterningMethod=
PATTERN_ORTHOGONALLY
, - referenceFace=
''
, - startPointForPatternDirection=
(0.0, 0.0, 0.0)
, - endPointForPatternDirection=
(0.0, 0.0, 0.0)
, - offsetFromEdges=
''
, - numberOfRows=
1
, - spacingBetweenRows=
''
, - projectionMethod=
PROJECT_BY_PROXIMITY
, - projectOnFaces=
()
, - projectOnElementFaces=
()
, - projectionDirStartPt=
(0.0, 0.0, 0.0)
, - projectionDirEndPt=
(0.0, 0.0, 0.0)
, - setName=
''
, This method creates a Feature object by creating attachment points along or offset from one or more connected edges.
Note
This function can be accessed by:
mdb.models[name].parts[name].AttachmentPoints mdb.models[name].rootAssembly.AttachmentPoints
- Parameters:¶
- name¶
A String specifying a unique Feature name.
- edges¶
A sequence of connected Edge objects specifying the geometry edges from which to offset the points.
- startPoint=
''
¶ A ConstrainedSketchVertex of the selected edges that specifies the point from which to create points. This point can be one of the two end vertices of the connected edges. In case of edges forming a closed loop and having multiple vertices, this point can be any one of the vertices on the edges.
- flipDirection=
''
¶ This parameter is required to indicate the direction in which to create the points. This parameter is required only in case of edges forming a closed loop.
- pointCreationMethod=
BY_NUMBER
¶ A SymbolicConstant specifying the point creation method. Possible values are BY_NUMBER or BY_SPACING.
- numberOfPoints=
''
¶ An integer specifying the number of points to be created along the selected edges.
- spacingBetweenPoints=
''
¶ A float specifying the spacing to be used between two points while creating the points between the start and end points of the edges.
- offsetFromStartPoint=
0
¶ A float specifying the distance by which to offset the first point from the start vertex of the edge chain. The default value is 0.0.
- offsetFromEndPoint=
0
¶ A float specifying the distance by which to offset the last point from the end vertex of the edge chain. This parameter should be specified only if the point creation method is BY_NUMBER. The default value is 0.0.
- spacingMethod=
AUTO_FIT_PTS
¶ A SymbolicConstant specifying the spacing method. Possible values are AUTO_FIT_PTS or SPECIFY_NUM_PTS. The default value is AUTO_FIT_PTS.
- patterningMethod=
PATTERN_ORTHOGONALLY
¶ A SymbolicConstant specifying the method to pattern of points. Possible values are PATTERN_ORTHOGONALLY or PATTERN_ALONG_DIRECTION.
- referenceFace=
''
¶ A geometry Face object adjacent to one of the edges from which to offset the points to create a pattern of points when the PATTERN_ORTHOGONALLY method is chosen for patterning. The face is used to identify the patterning direction. If the number of rows is one and the initial offset is zero, the reference face may not be specified.
- startPointForPatternDirection=
(0.0, 0.0, 0.0)
¶ A point specifying the start point of the direction along which to create a pattern of points when the PATTERN_ALONG_DIRECTION method is chosen for patterning. The point can be a ConstrainedSketchVertex, Datum point, Reference point, Attachment point, orphan mesh Node, Interesting point object, or a tuple of Floats representing the coordinates of a point.
- endPointForPatternDirection=
(0.0, 0.0, 0.0)
¶ A point specifying the end point of the direction along which to create a pattern of points when the PATTERN_ALONG_DIRECTION method is chosen for patterning. The point can be a ConstrainedSketchVertex, Datum point, Reference point, Attachment point, orphan mesh Node, Interesting point object, or a tuple of Floats representing the coordinates of a point.
- offsetFromEdges=
''
¶ A float specifying the distance by which to offset the first row of points from the edges.
- numberOfRows=
1
¶ An integer specifying the number of rows of points to be created for the pattern. The default value is 1.
- spacingBetweenRows=
''
¶ A float specifying the spacing to be used between two rows while creating a pattern of points.
- projectionMethod=
PROJECT_BY_PROXIMITY
¶ A SymbolicConstant specifying the projection method. Possible values are PROJECT_BY_PROXIMITY and PROJECT_BY_DIRECTION. The default value is PROJECT_BY_PROXIMITY.
- projectOnFaces=
()
¶ A sequence of Face objects specifying the geometry faces onto which the points are to be projected.
- projectOnElementFaces=
()
¶ A sequence of MeshFace objects specifying the orphan mesh element faces onto which the points are to be projected.
- projectionDirStartPt=
(0.0, 0.0, 0.0)
¶ A point specifying the start point of the projection direction. The point can be a ConstrainedSketchVertex, Datum point, Reference point, Attachment point, orphan mesh Node, Interesting point object, or a tuple of Floats representing the coordinates of a point.
- projectionDirEndPt=
(0.0, 0.0, 0.0)
¶ A point specifying the end point of the projection direction. The point can be a ConstrainedSketchVertex, Datum point, Reference point, Attachment point, orphan mesh Node, Interesting point object, or a tuple of Floats representing the coordinates of a point.
- setName=
''
¶ A String specifying a unique set name.
- Returns:¶
feature – A Feature object
- Return type:¶
- DatumAxisByCylFace(face)[source]¶
This method creates a Feature object and a DatumAxis object along the axis of a cylinder or cone.
Note
This function can be accessed by:
mdb.models[name].parts[name].AttachmentPoints mdb.models[name].rootAssembly.AttachmentPoints
Note
- DatumAxisByNormalToPlane(plane, point)[source]¶
This method creates a Feature object and a DatumAxis object normal to the specified plane and passing through the specified point.
Note
This function can be accessed by:
mdb.models[name].parts[name].AttachmentPoints mdb.models[name].rootAssembly.AttachmentPoints
Note
- DatumAxisByParToEdge(edge, point)[source]¶
This method creates a Feature object and a DatumAxis object parallel to the specified edge and passing through the specified point.
Note
This function can be accessed by:
mdb.models[name].parts[name].AttachmentPoints mdb.models[name].rootAssembly.AttachmentPoints
Note
- DatumAxisByPrincipalAxis(principalAxis)[source]¶
This method creates a Feature object and a DatumAxis object along one of the three principal axes.
Note
This function can be accessed by:
mdb.models[name].parts[name].AttachmentPoints mdb.models[name].rootAssembly.AttachmentPoints
Note
- DatumAxisByRotation( )[source]¶
- DatumAxisByRotation(
- line: Edge | Datum | MeshEdge,
- point: ConstrainedSketchVertex | DatumPoint | MeshNode | InterestingPoint | Sequence[float] | ndarray[Any, dtype[_ScalarType_co]],
- angle: float,
- DatumAxisByRotation(*args, **kwargs)
- DatumAxisByThreePoint(point1, point2, point3)[source]¶
This method creates a Feature object and a DatumAxis object normal to the circle described by three points and through its center.
Note
This function can be accessed by:
mdb.models[name].parts[name].AttachmentPoints mdb.models[name].rootAssembly.AttachmentPoints
- Parameters:¶
- point1¶
A ConstrainedSketchVertex, an InterestingPoint, a MeshNode, or a Datum object representing a datum point specifying the first point on the circle.
- point2¶
A ConstrainedSketchVertex, an InterestingPoint, a MeshNode, or a Datum object representing a datum point specifying the second point on the circle.
- point3¶
A ConstrainedSketchVertex, an InterestingPoint, a MeshNode, or a Datum object representing a datum point specifying the third point on the circle.
- Returns:¶
A Feature object.
- Return type:¶
- Raises:¶
- DatumAxisByThruEdge(edge)[source]¶
This method creates a Feature object and a DatumAxis object along the specified edge.
Note
This function can be accessed by:
mdb.models[name].parts[name].AttachmentPoints mdb.models[name].rootAssembly.AttachmentPoints
Note
- DatumAxisByTwoPlane(plane1, plane2)[source]¶
This method creates a Feature object and a DatumAxis object at the intersection of two planes.
Note
This function can be accessed by:
mdb.models[name].parts[name].AttachmentPoints mdb.models[name].rootAssembly.AttachmentPoints
Note
- DatumAxisByTwoPoint(point1, point2)[source]¶
This method creates a Feature object and a DatumAxis object along the line joining two points.
Note
This function can be accessed by:
mdb.models[name].parts[name].AttachmentPoints mdb.models[name].rootAssembly.AttachmentPoints
Note
-
DatumCsysByDefault(coordSysType, name=
''
)[source]¶ This method creates a Feature object and a DatumCsys object from the specified default coordinate system at the origin.
Note
This function can be accessed by:
mdb.models[name].parts[name].AttachmentPoints mdb.models[name].rootAssembly.AttachmentPoints
Note
-
DatumCsysByOffset(coordSysType, datumCoordSys, vector, point, name=
''
)[source]¶ This method creates a Feature object and a DatumCsys object by offsetting the origin of an existing datum coordinate system to a specified point.
Note
This function can be accessed by:
mdb.models[name].parts[name].AttachmentPoints mdb.models[name].rootAssembly.AttachmentPoints
Note
- Parameters:¶
- coordSysType¶
A SymbolicConstant specifying the type of coordinate system. Possible values are CARTESIAN, CYLINDRICAL, and SPHERICAL.
- datumCoordSys¶
A Datum object representing a datum coordinate system from which to offset.
- vector¶
A sequence of three Floats specifying the X, Y, and Z offsets from datumCoordSys. The arguments vector and point are mutually exclusive, and one of them must be specified.
- point¶
A ConstrainedSketchVertex, InterestingPoint, DatumPoint object or a sequence of three Floats specifying the X, Y, and Z coordinates of a point in space. The point represents the origin of the new datum coordinate system. The arguments vector and point are mutually exclusive, and one of them must be specified.
- name=
''
¶ A String specifying the name of the DatumCsys.
- Returns:¶
A Feature object.
- Return type:¶
- Raises:¶
- DatumCsysByThreePoints( )[source]¶
This method creates a Feature object and a DatumCsys object from three points.
Note
This function can be accessed by:
mdb.models[name].parts[name].AttachmentPoints mdb.models[name].rootAssembly.AttachmentPoints
Note
- Parameters:¶
- coordSysType¶
A SymbolicConstant specifying the type of coordinate system. Possible values are CARTESIAN, CYLINDRICAL, and SPHERICAL.
- origin¶
A ConstrainedSketchVertex, an InterestingPoint, a MeshNode, or a Datum object representing a datum point specifying the origin of the coordinate system.
- point1¶
A ConstrainedSketchVertex, an InterestingPoint, a MeshNode, or a Datum object representing a datum point specifying a point on the X axis or the rr-axis. The point1 and line1 arguments are mutually exclusive. One of them must be specified.
- point2¶
A ConstrainedSketchVertex, an InterestingPoint, a MeshNode, or a Datum object representing a datum point specifying a point in the X - Y plane or the rr-θθ plane. The point2 and line2 arguments are mutually exclusive. One of them must be specified.
- line1¶
An Edge, an Element Edge, or a Datum object representing a datum axis specifying the X axis or the rr-axis. The point1 and line1 arguments are mutually exclusive. One of them must be specified.
- line2¶
An Edge, an Element Edge, or a Datum object representing a datum axis specifying a vector in the X - Y plane or the rr-θθ plane. The point2 and line2 arguments are mutually exclusive. One of them must be specified.
- name=
''
¶ A String specifying the name of the DatumCsys.
- Returns:¶
A Feature object.
- Return type:¶
- Raises:¶
-
DatumCsysByTwoLines(coordSysType, line1, line2, name=
''
)[source]¶ This method creates a Feature object and a DatumCsys object from two orthogonal lines. The origin of the new datum coordinate system is placed at the intersection of the two lines.
Note
This function can be accessed by:
mdb.models[name].parts[name].AttachmentPoints mdb.models[name].rootAssembly.AttachmentPoints
Note
- Parameters:¶
- coordSysType¶
A SymbolicConstant specifying the type of coordinate system. Possible values are CARTESIAN, CYLINDRICAL, and SPHERICAL.
- line1¶
A straight Edge, an ElementEdge, or a Datum object representing a datum axis specifying the X axis or the rr-axis.
- line2¶
A straight Edge, an ElementEdge, or a Datum object representing a datum axis specifying a line in the X - Y plane or in the rr-θθ plane.
- name=
''
¶ A String specifying the name of the DatumCsys.
- Returns:¶
A Feature object.
- Return type:¶
- Raises:¶
- DatumPlaneByLinePoint(line, point)[source]¶
This method creates a Feature object and a DatumPlane object that pass through the specified line and through the specified point that does not lie on the line.
Note
This function can be accessed by:
mdb.models[name].parts[name].AttachmentPoints mdb.models[name].rootAssembly.AttachmentPoints
Note
- DatumPlaneByOffset(
- plane: Face | MeshFace | Datum,
- flip: Literal[abaqus.UtilityAndView.SymbolicConstant.abaqusConstants.SIDE1] | Literal[abaqus.UtilityAndView.SymbolicConstant.abaqusConstants.SIDE2],
- offset: float,
- DatumPlaneByOffset(
- plane: Face | MeshFace | Datum,
- point: ConstrainedSketchVertex | DatumPoint | MeshNode | InterestingPoint | Sequence[float] | ndarray[Any, dtype[_ScalarType_co]],
- DatumPlaneByOffset(*args, **kwargs)
- DatumPlaneByPointNormal(point, normal)[source]¶
This method creates a Feature object and a DatumPlane object normal to the specified line and running through the specified point.
Note
This function can be accessed by:
mdb.models[name].parts[name].AttachmentPoints mdb.models[name].rootAssembly.AttachmentPoints
Note
- DatumPlaneByPrincipalPlane(principalPlane, offset)[source]¶
This method creates a Feature object and a DatumPlane object through the origin along one of the three principal planes.
Note
This function can be accessed by:
mdb.models[name].parts[name].AttachmentPoints mdb.models[name].rootAssembly.AttachmentPoints
Note
- DatumPlaneByRotation(plane, axis, angle)[source]¶
This method creates a Feature object and a DatumPlane object by rotating a plane about the specified axis through the specified angle.
Note
This function can be accessed by:
mdb.models[name].parts[name].AttachmentPoints mdb.models[name].rootAssembly.AttachmentPoints
- DatumPlaneByThreePoints(point1, point2, point3)[source]¶
This method creates a Feature object and a DatumPlane object defined by passing through three points.
Note
This function can be accessed by:
mdb.models[name].parts[name].AttachmentPoints mdb.models[name].rootAssembly.AttachmentPoints
Note
- Parameters:¶
- point1¶
A ConstrainedSketchVertex, an InterestingPoint, a MeshNode, or a Datum object representing a datum point.
- point2¶
A ConstrainedSketchVertex, an InterestingPoint, a MeshNode, or a Datum object representing a datum point.
- point3¶
A ConstrainedSketchVertex, an InterestingPoint, a MeshNode, or a Datum object representing a datum point.
- Returns:¶
A Feature object.
- Return type:¶
- Raises:¶
- DatumPlaneByTwoPoint(point1, point2)[source]¶
This method creates a Feature object and a DatumPlane object midway between two points and normal to the line connecting the points.
Note
This function can be accessed by:
mdb.models[name].parts[name].AttachmentPoints mdb.models[name].rootAssembly.AttachmentPoints
Note
- DatumPointByCoordinate(coords)[source]¶
This method creates a Feature object and a DatumPoint object at the point defined by the specified coordinates.
Note
This function can be accessed by:
mdb.models[name].parts[name].AttachmentPoints mdb.models[name].rootAssembly.AttachmentPoints
Note
- DatumPointByEdgeParam(edge, parameter)[source]¶
This method creates a Feature object and a DatumPoint object along an edge at a selected distance from one end of the edge.
Note
This function can be accessed by:
mdb.models[name].parts[name].AttachmentPoints mdb.models[name].rootAssembly.AttachmentPoints
Note
- DatumPointByMidPoint(point1, point2)[source]¶
This method creates a Feature object and a DatumPoint object midway between two points.
Note
This function can be accessed by:
mdb.models[name].parts[name].AttachmentPoints mdb.models[name].rootAssembly.AttachmentPoints
Note
- DatumPointByOffset(point, vector)[source]¶
This method creates a Feature object and a DatumPoint object offset from an existing point by a vector.
Note
This function can be accessed by:
mdb.models[name].parts[name].AttachmentPoints mdb.models[name].rootAssembly.AttachmentPoints
Note
- DatumPointByOnFace(face, edge1, offset1, edge2, offset2)[source]¶
This method creates a Feature object and a DatumPoint object on the specified face, offset from two edges.
Note
This function can be accessed by:
mdb.models[name].parts[name].AttachmentPoints mdb.models[name].rootAssembly.AttachmentPoints
Note
- DatumPointByProjOnEdge(point, edge)[source]¶
This method creates a Feature object and a DatumPoint object along an edge by projecting an existing point along the normal to the edge.
Note
This function can be accessed by:
mdb.models[name].parts[name].AttachmentPoints mdb.models[name].rootAssembly.AttachmentPoints
Note
- DatumPointByProjOnFace(point, face)[source]¶
This method creates a Feature object and a DatumPoint object on a specified face by projecting an existing point onto the face.
Note
This function can be accessed by:
mdb.models[name].parts[name].AttachmentPoints mdb.models[name].rootAssembly.AttachmentPoints
Note
- MakeSketchTransform(
- sketchPlane,
- origin=
()
, - sketchOrientation=
RIGHT
, - sketchPlaneSide=
SIDE1
, - sketchUpEdge=
None
, This method creates a Transform object. A Transform object is a 4x3 matrix of Floats that represents the transformation from sketch coordinates to part coordinates.
Note
This function can be accessed by:
mdb.models[name].parts[name].AttachmentPoints mdb.models[name].rootAssembly.AttachmentPoints
Note
- Parameters:¶
- sketchPlane¶
A Datum plane object or a planar Face object specifying the sketch plane.
- origin=
()
¶ A sequence of Floats specifying the X, Y, and Z coordinates that will be used as the origin of the sketch. The default value is computed as the centroid of the face.
- sketchOrientation=
RIGHT
¶ A SymbolicConstant specifying the orientation of sketchUpEdge on the sketch. Possible values are RIGHT, LEFT, TOP, and BOTTOM. The default value is RIGHT.
- sketchPlaneSide=
SIDE1
¶ A SymbolicConstant specifying on which side of the sketchPlane the sketch is positioned. Possible values are SIDE1 and SIDE2. The default value is SIDE1.
- sketchUpEdge=
None
¶ An Edge or DatumAxis object specifying the orientation of the sketch. If unspecified, the sketch is assumed to be oriented with the Y direction pointing up.
- Returns:¶
A Transform object. A Transform is an object with one method that returns the transform matrix.
- Return type:¶
Transform
- Raises:¶
Exception – Up direction is parallel to plane normal, If the sketchUpEdge is parallel to the sketchPlane.
- PartitionCellByDatumPlane(cells, datumPlane)[source]¶
This method partitions one or more cells using the given datum plane.
Note
This function can be accessed by:
mdb.models[name].parts[name].AttachmentPoints mdb.models[name].rootAssembly.AttachmentPoints
Note
- PartitionCellByExtendFace(cells, extendFace)[source]¶
This method partitions one or more cells by extending the underlying geometry of a given face to partition the target cells.
Note
This function can be accessed by:
mdb.models[name].parts[name].AttachmentPoints mdb.models[name].rootAssembly.AttachmentPoints
Note
- PartitionCellByExtrudeEdge(cells, edges, line, sense)[source]¶
This method partitions one or more cells by extruding selected edges in the given direction.
Note
This function can be accessed by:
mdb.models[name].parts[name].AttachmentPoints mdb.models[name].rootAssembly.AttachmentPoints
Note
- Parameters:¶
- cells¶
A sequence of Cell objects specifying the cells to partition.
- edges¶
The Edge objects to be extruded. The edges must be in the same plane. The edges must form a continuous chain, without branches. The edges must belong to the same PartInstance object.
- line¶
A straight Edge or DatumAxis object specifying the extrude direction. line must be perpendicular to the plane formed by edges.
- sense¶
A SymbolicConstant specifying the direction of the extrusion. Possible values are FORWARD and REVERSE. If sense = FORWARD, the extrusion is in the direction of line.
- Returns:¶
A Feature object.
- Return type:¶
- Raises:¶
- PartitionCellByPatchNCorners(cell, cornerPoints)[source]¶
This method partitions a cell using an N-sided cutting patch defined by the given corner points.
Note
This function can be accessed by:
mdb.models[name].parts[name].AttachmentPoints mdb.models[name].rootAssembly.AttachmentPoints
- PartitionCellByPatchNEdges(cell, edges)[source]¶
This method partitions a cell using an N-sided cutting patch defined by the given edges.
Note
This function can be accessed by:
mdb.models[name].parts[name].AttachmentPoints mdb.models[name].rootAssembly.AttachmentPoints
Note
- PartitionCellByPlaneNormalToEdge(cells, edge, point)[source]¶
This method partitions one or more cells using a plane normal to an edge at the given edge point.
Note
This function can be accessed by:
mdb.models[name].parts[name].AttachmentPoints mdb.models[name].rootAssembly.AttachmentPoints
- PartitionCellByPlanePointNormal(cells, point, normal)[source]¶
This method partitions one or more cells using a plane defined by a point and a normal direction.
Note
This function can be accessed by:
mdb.models[name].parts[name].AttachmentPoints mdb.models[name].rootAssembly.AttachmentPoints
- PartitionCellByPlaneThreePoints(cells, point1, point2, point3)[source]¶
This method partitions one or more cells using a plane defined by three points.
Note
This function can be accessed by:
mdb.models[name].parts[name].AttachmentPoints mdb.models[name].rootAssembly.AttachmentPoints
- Parameters:¶
- cells¶
A sequence of Cell objects specifying the cells to partition.
- point1¶
A ConstrainedSketchVertex, InterestingPoint, or DatumPoint object specifying a point on the plane.
- point2¶
A ConstrainedSketchVertex, InterestingPoint, or DatumPoint object specifying a point on the plane.
- point3¶
A ConstrainedSketchVertex, InterestingPoint, or DatumPoint object specifying a point on the plane. Note: point1, point2, and point3 must not be colinear and must not coincide.
- Returns:¶
A Feature object.
- Return type:¶
- Raises:¶
- PartitionCellBySweepEdge(cells, edges, sweepPath)[source]¶
This method partitions one or more cells by sweeping selected edges along the given sweep path.
Note
This function can be accessed by:
mdb.models[name].parts[name].AttachmentPoints mdb.models[name].rootAssembly.AttachmentPoints
Note
- Parameters:¶
- cells¶
A sequence of Cell objects specifying the cells to partition.
- edges¶
A sequence of Edge objects to be swept. The edges must be in the same plane. The edges must form a continuous chain without branches. The Edge objects must all belong to the same PartInstance object.
- sweepPath¶
An Edge object specifying the sweep path. The start of sweepPath must be in the plane and perpendicular to the plane formed by edges. The sweep path must be planar.
- Returns:¶
A Feature object.
- Return type:¶
- Raises:¶
- PartitionEdgeByDatumPlane(edges, datumPlane)[source]¶
This method partitions an edge where it intersects with a datum plane.
Note
This function can be accessed by:
mdb.models[name].parts[name].AttachmentPoints mdb.models[name].rootAssembly.AttachmentPoints
Note
- PartitionEdgeByParam(edges, parameter)[source]¶
This method partitions one or more edges at the given normalized edge parameter.
Note
This function can be accessed by:
mdb.models[name].parts[name].AttachmentPoints mdb.models[name].rootAssembly.AttachmentPoints
Note
- PartitionEdgeByPoint(edge, point)[source]¶
This method partitions an edge at the given point.
Note
This function can be accessed by:
mdb.models[name].parts[name].AttachmentPoints mdb.models[name].rootAssembly.AttachmentPoints
Note
- PartitionFaceByAuto(face)[source]¶
This method automatically partitions a target face into simple regions that can be meshed using a structured meshing technique.
Note
This function can be accessed by:
mdb.models[name].parts[name].AttachmentPoints mdb.models[name].rootAssembly.AttachmentPoints
Note
- PartitionFaceByCurvedPathEdgeParams(face, edge1, parameter1, edge2, parameter2)[source]¶
This method partitions a face normal to two edges, using a curved path between the two given edge points defined by the normalized edge parameters.
Note
This function can be accessed by:
mdb.models[name].parts[name].AttachmentPoints mdb.models[name].rootAssembly.AttachmentPoints
- Parameters:¶
- face¶
A Face object specifying the face to partition.
- edge1¶
An Edge object specifying the start of the partition. The edge must belong to face.
- parameter1¶
A Float specifying the distance along edge1 at which to partition. Possible values are 0.0 ≤ distance1 ≤ 1.0.
- edge2¶
An Edge object specifying the end of the partition. The edge must belong to face.
- parameter2¶
A Float specifying the distance along edge2 at which to partition. Possible values are 0.0 ≤ distance2 ≤ 1.0.
- Returns:¶
A Feature object.
- Return type:¶
- Raises:¶
- PartitionFaceByCurvedPathEdgePoints(face, edge1, point1, edge2, point2)[source]¶
This method partitions a face normal to two edges, using a curved path between the two given edge points.
Note
This function can be accessed by:
mdb.models[name].parts[name].AttachmentPoints mdb.models[name].rootAssembly.AttachmentPoints
- Parameters:¶
- face¶
A Face object specifying the face to partition.
- edge1¶
An Edge object specifying the start of the partition. The edge must belong to face.
- point1¶
A ConstrainedSketchVertex, InterestingPoint, or DatumPoint object specifying a point on edge1.
- edge2¶
An Edge object specifying the end of the partition. The edge must belong to face.
- point2¶
A ConstrainedSketchVertex, InterestingPoint, or DatumPoint object specifying a point on edge2.
- Returns:¶
A Feature object.
- Return type:¶
- Raises:¶
- PartitionFaceByDatumPlane(faces, datumPlane)[source]¶
This method partitions one or more faces using the given datum plane.
Note
This function can be accessed by:
mdb.models[name].parts[name].AttachmentPoints mdb.models[name].rootAssembly.AttachmentPoints
Note
- PartitionFaceByExtendFace(faces, extendFace)[source]¶
This method partitions one or more faces by extending the underlying geometry of another given face to partition the target faces.
Note
This function can be accessed by:
mdb.models[name].parts[name].AttachmentPoints mdb.models[name].rootAssembly.AttachmentPoints
Note
- PartitionFaceByIntersectFace(faces, cuttingFaces)[source]¶
This method partitions one or more faces using the given cutting faces to partition the target faces.
Note
This function can be accessed by:
mdb.models[name].parts[name].AttachmentPoints mdb.models[name].rootAssembly.AttachmentPoints
-
PartitionFaceByProjectingEdges(faces, edges, extendEdges=
False
)[source]¶ This method partitions one or more faces by projecting the given edges on the target faces.
Note
This function can be accessed by:
mdb.models[name].parts[name].AttachmentPoints mdb.models[name].rootAssembly.AttachmentPoints
- Parameters:¶
- faces¶
A sequence of Face objects specifying the faces to partition.
- edges¶
A sequence of Edge objects specifying the edges that will be projected onto the target faces.
- extendEdges=
False
¶ A boolean specifying whether to extend the given edges at their free ends in the tangent direction before partitioning the target faces. The default value is False.
- Returns:¶
feature – A Feature object
- Return type:¶
- PartitionFaceByShortestPath(faces, point1, point2)[source]¶
This method partitions one or more faces using a minimum distance path between the two given points.
Note
This function can be accessed by:
mdb.models[name].parts[name].AttachmentPoints mdb.models[name].rootAssembly.AttachmentPoints
Note
- Parameters:¶
- faces¶
A sequence of Face objects specifying the face to partition.
- point1¶
A ConstrainedSketchVertex, InterestingPoint, or DatumPoint object.
- point2¶
A ConstrainedSketchVertex, InterestingPoint, or DatumPoint object. Note: point1 and point2 must not coincide, and they must both lie on the underlying surface geometry of at least one of the target faces.
- Returns:¶
A Feature object.
- Return type:¶
- Raises:¶
-
PartitionFaceBySketch(faces, sketch, sketchUpEdge=
''
, sketchOrientation=RIGHT
)[source]¶ This method partitions one or more planar faces by sketching on them.
Note
This function can be accessed by:
mdb.models[name].parts[name].AttachmentPoints mdb.models[name].rootAssembly.AttachmentPoints
Note
- Parameters:¶
- faces¶
A sequence of Face objects specifying the faces to partition.
- sketch¶
A ConstrainedSketch object specifying the partition.
- sketchUpEdge=
''
¶ An Edge or DatumAxis object specifying the orientation of sketch. This edge or datum axis must not be orthogonal to the plane defined by faces. If unspecified, sketch is assumed to be oriented in with the Y direction pointing up.
- sketchOrientation=
RIGHT
¶ A SymbolicConstant specifying the orientation of sketchUpEdge on the sketch. Possible values are RIGHT, LEFT, TOP, and BOTTOM. The default value is RIGHT.
- Returns:¶
A Feature object.
- Return type:¶
- Raises:¶
- PartitionFaceBySketchDistance(
- faces,
- sketchPlane,
- sketchPlaneSide,
- sketchUpEdge,
- sketch,
- distance,
- sketchOrientation=
RIGHT
, This method partitions one or more faces by sketching on a sketch plane and then projecting the sketch toward the target faces through the given distance.
Note
This function can be accessed by:
mdb.models[name].parts[name].AttachmentPoints mdb.models[name].rootAssembly.AttachmentPoints
- Parameters:¶
- faces¶
A sequence of Face objects specifying the faces to partition.
- sketchPlane¶
A planar Face or DatumPlane object.
- sketchPlaneSide¶
A SymbolicConstant specifying the side of the plane to be used for sketching. Possible values are SIDE1 and SIDE2.
- sketchUpEdge¶
An Edge object specifying the orientation of sketch. This edge must not be orthogonal to sketchPlane.
- sketch¶
A ConstrainedSketch object specifying the partition.
- distance¶
A Float specifying the projection distance. Possible values are distance > 0.0.
- sketchOrientation=
RIGHT
¶ A SymbolicConstant specifying the orientation of sketchUpEdge on the sketch. Possible values are RIGHT, LEFT, TOP, and BOTTOM. The default value is RIGHT.
- Returns:¶
A Feature object.
- Return type:¶
- Raises:¶
- PartitionFaceBySketchRefPoint(
- faces,
- sketchPlane,
- sketchUpEdge,
- sketch,
- point,
- sketchOrientation=
RIGHT
, This method partitions one or more faces by sketching on a sketch plane and then projecting the sketch toward the target faces through a distance governed by the reference point.
Note
This function can be accessed by:
mdb.models[name].parts[name].AttachmentPoints mdb.models[name].rootAssembly.AttachmentPoints
- Parameters:¶
- faces¶
A sequence of Face objects specifying the faces to partition.
- sketchPlane¶
A planar Face or DatumPlane object.
- sketchUpEdge¶
An Edge object or a DatumAxis object specifying the orientation of sketch. This edge or datum axis must not be orthogonal to sketchPlane.
- sketch¶
A ConstrainedSketch object specifying the partition.
- point¶
A ConstrainedSketchVertex, InterestingPoint, or DatumPoint object specifying the distance to project sketch. The point must not lie on sketchPlane.
- sketchOrientation=
RIGHT
¶ A SymbolicConstant specifying the orientation of sketchUpEdge on the sketch. Possible values are RIGHT, LEFT, TOP, and BOTTOM. The default value is RIGHT.
- Returns:¶
A Feature object.
- Return type:¶
- Raises:¶
- PartitionFaceBySketchThruAll(
- faces,
- sketchPlane,
- sketchPlaneSide,
- sketchUpEdge,
- sketch,
- sketchOrientation=
RIGHT
, This method partitions one or more faces by sketching on a sketch plane and then projecting toward the target faces through an infinite distance.
Note
This function can be accessed by:
mdb.models[name].parts[name].AttachmentPoints mdb.models[name].rootAssembly.AttachmentPoints
- Parameters:¶
- faces¶
A sequence of Face objects specifying the faces to partition.
- sketchPlane¶
A planar Face or DatumPlane object.
- sketchPlaneSide¶
A SymbolicConstant specifying the extrude direction of the sketch. Possible values are SIDE1 and SIDE2.
- sketchUpEdge¶
An Edge or a DatumAxis object specifying the orientation of sketch. This edge or datum axis must not be orthogonal to sketchPlane.
- sketch¶
A ConstrainedSketch object specifying the partition.
- sketchOrientation=
RIGHT
¶ A SymbolicConstant specifying the orientation of sketchUpEdge on the sketch. Possible values are RIGHT, LEFT, TOP, and BOTTOM. The default value is RIGHT.
- Returns:¶
A Feature object.
- Return type:¶
- Raises:¶
-
ReferencePoint(point, instanceName=
''
)[source]¶ This method creates a Feature object and a ReferencePoint object at the specified location.
Note
This function can be accessed by:
mdb.models[name].parts[name].AttachmentPoints mdb.models[name].rootAssembly.AttachmentPoints
Note
- RemoveWireEdges(wireEdgeList)[source]¶
This method removes wire edges.
Note
This function can be accessed by:
mdb.models[name].parts[name].AttachmentPoints mdb.models[name].rootAssembly.AttachmentPoints
Note
-
WirePolyLine(points, mergeType=
IMPRINT
, meshable=1
)[source]¶ This method creates an additional Feature object by creating a series of wires joining points in pairs. When such a feature is created at the Part level, then each point can be either a datum point, a vertex, a reference point, an interesting point, an orphan mesh node, or the coordinates of a point. When such a feature is created at the Assembly level, then each point can only be a vertex, a reference point, or an orphan mesh node.
Note
This function can be accessed by:
mdb.models[name].parts[name].AttachmentPoints mdb.models[name].rootAssembly.AttachmentPoints
Note
- Parameters:¶
- points¶
A tuple of point pairs, each pair being itself represented by a tuple. For part level features each point can be a ConstrainedSketchVertex, Datum point, Reference point, orphan mesh Node, or InterestingPoint object specifying the points through which the polyline wire will pass. Each point can also be a tuple of Floats representing the coordinates of a point. For assembly level features each point can only be a ConstrainedSketchVertex, Reference point, or orphan mesh Node specifying the points through which the polyline wire will pass (coordinates cannot be specified). In any of the pairs, the first or second point can be NONE. In that case, the point pair will create a zero-length wire, which is required for certain types of connectors. You must specify at least one pair.
- mergeType=
IMPRINT
¶ A SymbolicConstant specifying the merge behavior of the wire with existing geometry. If mergeType is MERGE, Abaqus merges the wire into solid regions of the part if the wire passes through them. If mergeType is IMPRINT, Abaqus imprints the wire on existing geometry as edges. If mergeType is SEPARATE, Abaqus neither merges nor imprints the spline wire with existing geometry. It creates the wire separately. The default value is IMPRINT.
- meshable=
1
¶ A Boolean specifying whether the wire should be available for selection for meshing operations. If meshable = OFF, the wire can be used for connector section assignment. The default value is ON.
- Returns:¶
feature – A Feature object
- Return type:¶
- restore()[source]¶
This method restores the parameters of a feature to the value they had when the backup method was invoked on the part or assembly.
Use the restore method after the backup method.
- resume()[source]¶
This method resumes suppressed features.
Resuming a feature fully restores it to the part or assembly. You can resume the last feature you suppressed, all suppressed features, or just selected features. When you resume a child feature, Abaqus/CAE also resumes the parent features automatically.
-
setValues(parameter=
0
, parameter1=0
, parameter2=0
, sketch=Ellipsis
, distance=0
)[source]¶ This method modifies the Feature object.
Note
- Parameters:¶
- parameter=
0
¶ A Float specifying the normalized distance along edge at which to partition. Possible values are 0.0 < parameter < 1.0. You use this argument to modify a partition created with the created with the PartitionEdgeByParam method.
- parameter1=
0
¶ A Float specifying the distance along edge1 at which to partition. Possible values are 0.0 ≤ parameter1 ≤ 1.0. You use this argument to modify a partition object created with the PartitionFaceByCurvedPathEdgeParam method.
- parameter2=
0
¶ A Float specifying the distance along edge2 at which to partition. Possible values are 0.0 ≤ parameter2 ≤ 1.0. You use this argument to modify a partition object created with the PartitionFaceByCurvedPathEdgeParam method.
- sketch=
Ellipsis
¶ A ConstrainedSketch object specifying the partition. You use this argument to modify a partition object created with a sketch; for example, using the PartitionFaceBySketch method.
- distance=
0
¶ A Float specifying the projection distance. Possible values are distance > 0.0. You use this argument to modify a partition object created with the PartitionFaceBySketchDistance method.
- parameter=
- Raises:¶
- suppress()[source]¶
This method suppresses features.
Suppressing a feature is equivalent to temporarily removing the feature from the part or assembly. Suppressed features remain suppressed when you regenerate a part or assembly. You cannot suppress the base feature. In addition, if you suppress a parent feature, all of its child features are also suppressed automatically. Suppressed features can be restored with the resume command.
- class FeatureOptions[source]¶
Bases:
object
The FeatureOptions object stores the options that control the behavior of feature regeneration for all features in a model.
Note
This object can be accessed by:
import part mdb.models[name].featureOptions
Note
Member Details:
-
setValues(checkSelfIntersection=
1
, autoCaching=1
, maxCachedStates=5
)[source]¶ This method modifies the FeatureOptions object for the specified model.
Note
- Parameters:¶
- checkSelfIntersection=
1
¶ A Boolean specifying whether Abaqus/CAE should perform self-intersection checks while regenerating features. The default value is ON.
- autoCaching=
1
¶ A Boolean specifying whether geometric states should be automatically cached. The default value is ON.
- maxCachedStates=
5
¶ An Int specifying the maximum number of caches to be stored with each part or with the assembly. The default value is 5.
- checkSelfIntersection=
-
setValues(checkSelfIntersection=